

Tetrahedron Letters 43 (2002) 9323-9325

The Heck reaction in the presence of molecular oxygen

Takahiro Hosokawa,^{a,*} Taisuke Kamiike,^a Shun-Ichi Murahashi,^b Mamoru Shimada^b and Toshihiro Sugafuji^b

^aDepartment of Environmental Systems Engineering, Faculty of Engineering, Kochi University of Technology, Tosayamada, Kochi 782-8502, Japan

^bGraduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Received 17 September 2002; revised 11 October 2002; accepted 18 October 2002

Abstract—Palladium-catalyzed reaction of CH₂=C(R)COOMe (R = H or CH₂OH) with PhI in the presence of NEt₃ under O₂ induces the oxidative dealkylation of NEt₃, affording either methyl 3-diethylaminopropionate (3) or methyl (Z)-2-benzyl-3-(N,N'-diethylamino)propenate (6), in case of R = H or R = CH₂OH, respectively. © 2002 Elsevier Science Ltd. All rights reserved.

Coupling reaction of aromatic halides (ArX) with alkenes by using palladium catalysts (Heck reaction) is one of representative reactions in organic chemistry of palladium.¹ The reaction proceeds via pathways shown in Scheme 1, and after completion of the arylation, the resulting X-Pd-H decomposes to Pd(0) and HX. The HX formed is scavenged by bases such as tertiary amines (NR₃). In order to protect Pd(0) formed against O_2 , the Heck reaction is usually performed under Ar or N_2 . However, if O_2 reacts with either X–Pd–H or Pd(0) to generate X-Pd-OOH species,² it could serve as an oxidant in the reaction. Described herein is the first observation of such a case, where the presence of O_2 induces an oxidative dealkylation of NR₃, resulting in alternation of product composition in the Heck reaction.³ This finding is important as a fundamental experimental fact in the Heck reaction.

Scheme 1.

When the reaction of methyl acrylate (1) and iodobenzene (PhI) with NEt₃ was carried out under O_2 (Table 1), methyl 3-diethylaminopropionate (3) was formed

Scheme 2.

along with the usual arylation product 2 (Scheme 2). This result shows that NEt₃ is oxidatively dealkylated to give NHEt₂ which adds to 1. Under an inert atmosphere (Ar), only the arylation product 2 is formed (entry 3 in Table 1). For the present reaction, palladium(II) complex such as $PdCl_2(MeCN)_2$ is allowable as the catalyst (entries 2–3), because palladium(II) reacts with tertiary amines to form Pd(0).⁴

The arylation of methyl (α -hydroxymethyl)acrylate (4) with PhI in the presence of NEt₃ under Ar (Table 2) gave aldehyde 5,^{5,6} as shown in Scheme 3. By contrast,

Table 1. Arylation of 1 with PhI and NEt_3 under O_2 or Ar^a

Entry	Catalyst	Atmosphere	2 (%) ^b	3 (%)°
1	Pd(PPh ₃) ₄	02	96	27
2	$PdCl_2(MeCN)_2$	O_2	96	26
3	$PdCl_2(MeCN)_2$	Ar	96	-

 $^{\rm a}$ The reaction was performed by using 1 (4 mmol), PhI (1 mmol), NEt_3 (4 mmol) and palladium catalyst (0.05 mmol) in DMF (4.3 mL) at 75°C for 24 h.

^b Yield based on PhI was determined by NMR.

^c Yield (NMR) based on NEt₃.

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)02372-9

Keywords: amination; Heck reaction; oxidation; oxygen; palladium. * Corresponding author. Tel.: +887-57-2517; fax: +887-57-2520;

e-mail: hosokawa.takahiro@kochi-tech.ac.jp

Scheme 3.

Table 2. Arylation of 4 with PhI and NEt $_3$ under O $_2$ or Ar^a

Entry	Catalyst	Atmosphere	Reaction time (h)	Enamine 6 (%) ^b
1	$Pd(PPh_3)_4$	02	8	34
2	$Pd(OAc)_2$	02	5	51 (49) ^c
3	PdCl ₂ (MeCN) ₂	$\overline{O_2}$	6	57
4	PdCl ₂ (MeCN) ₂	Ar	6	d

^a The reaction was performed by using **4** (2 mmol), PhI (2.2 mmol), NEt₃ (4 mmol) and palladium catalysts (0.1 mmol) in DMF (10 mL) at 80°C.

^b Yield based on 4 was determined by NMR.

^c In air for 32 h.

^d Aldehyde 5 is formed in 62% yield based on 4.

the use of O_2 altered the product composition, resulting in enamine $6^{7,8}$ as the sole product (entries 1–3). The aldehyde **5** arises from the arylation at C(3)=C(2) in **4** followed by Pd–H elimination from C(1) bearing OH group. The enamine **6** is derived from **5** and NHEt₂, showing that the oxidative dealkylation of NEt₃ again takes place. The enamine formation appears to be general with aryl iodides (ArI). As shown in Table 3, the formation of enamines is facilitated by electronwithdrawing substituent on ArI (entry 3), whereas it is retarded by electron-donating groups (entries 4–6).

Allylic substrate **7a** or **7b** bearing an electron-withdrawing substituent at C(2) similarly reacts with NEt₃ to give the corresponding enamine **8** (X = MeCO) (38%) or **9** (X=CN) (39%), respectively, under the conditions described in Table 1 (entry 2). However, β -methallyl alcohol **7c** affords only aldehyde **10** (31%), indicating that the enamine formation is required for the activation of aldehyde by electron-withdrawing group.

The participation of O_2 in the present reaction is demonstrated by the formation of cyclohexanone from cyclohexyldimethylamine (NCyMe₂) (Scheme 4). The yield of cyclohexanone (22%) is nearly the same as that

Table 3. Arylation of 4 with ArI and NEt₃ under O_2^a

Entry	Ar	Reaction time (h)	Enamine ^b (%) ^c
1	C ₆ H ₅	6	57
2	Naph	6	62
3	p-Cl-C ₆ H ₄	3	62
4	p-MeO-C ₆ H ₄	6	41
5	p-MeO-C ₆ H ₄	24	59
6	p-Me-C ₆ H ₄	24	49

^a The reaction was performed by using **4** (2 mmol), ArI (2.2 mmol), NEt₃ (4 mmol) and PdCl₂(MeCN)₂ (0.1 mmol) in DMF (10 mL) at 80°C.

^b The structure of enamine formed corresponds to **6** in Scheme 3.

^c Yield based on 4 was determined by NMR.

(19%) of enamine 11 bearing N,N-dimethyl group. This means that the NHMe₂ formed reacts almost quantitatively with aldehyde 5 to give 11.

Scheme 4.

Although the dealkylation process is not clear in detail, it could be induced by I–Pd–OOH species,² which is derived either from I–Pd–H and O₂ or via peroxopalladium(II) formed by Pd(0) and O₂. The conceptual pathway for NEt₃ is illustrated in Scheme 5. The Et group removed from NEt₃ must be transformed into MeCOOH via MeCHO, because ~1.1 mol of O₂ uptake is observed for the production of 1 mole of **3** or **6**; that is, nearly two O atoms of O₂ are consumed for the present reaction. The NHEt₂ formed further reacts with either alkene **1** or aldehyde **5** to give diethylaminopropionate **3** or enamine **6**, respectively. An iminium salt, which is produced from NEt₃ and Pd(II),^{4,9} is probably involved in the dealkylation.

In summary, we have found that the Heck reaction in the presence of O_2 is accompanied by an oxidative dealkylation of tertiary amines usually employed as the acid scavenger. The catalysis for arylation is operative even in the presence of O_2 . Although the present study has not focused on the synthetic utility, our finding may provide a cue for the nature of Pd–H species.

References

- (a) Heck, R. F. Palladium Reagents in Organic Synthesis; Academic Press: New York, 1985; pp. 276–299; (b) Heck, R. F. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, Chapter 4; (c) Tsuji, J. Palladium Reagents and Catalysts, Innovation in Organic Synthesis; John Wiley & Sons: New York, 1995; pp. 125–167; (d) Overman, L. E. Pure Appl. Chem. 1994, 66, 1423; (e) De Meijere, A.; Meyer, F. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379–2411; (f) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3069; (g) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123, 6989–7000 and references cited therein.
- (a) Hosokawa, T.; Murahashi, S.-I. Acc. Chem. Res. 1990, 23, 49–54; (b) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 6750–6755; (c) Nishimura, T.; Kakiuchi, N.; Onoue, T.; Ohe, K.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 1915– 1918; (d) Kakiuchi, K.; Nishimura, T.; Inoue, M.; Uemura, S. Bull. Chem. Soc. Jpn. 2001, 74, 165–172; (e) Stahl, S. S.; Thorman, J. L.; Nelson, R. C.; Kozee, M. A. J. Am. Chem. Soc. 2001, 123, 7188–7189; (f) Steinhoff, B. A.; Fix, S. R.; Stahl, S. S. J. Am. Chem. Soc. 2002, 124, 766–767.
- 3. Recently, robust palladium catalysts, which are not sensitive to air and moisture, has been developed in the Heck reaction, see: (a) Feuerstein, M.; Doucet, H.; Santelli, M. J. Org. Chem. 2001, 66, 5923-5925; (b) Peris, E.; Loch, J. A.; Mata, J.; Crabtree, R. H. Chem. Commun. 2001, 201-202; (c) Gai, X.; Grigg, R.; Ramzan, M. I.; Sridharan, V.; Collard, S.; Muir, J. E. Chem. Commun. 2000, 2053-2054; (d) Bergbreiter, D. E.; Osburn, P. L.; Liu, Y.-S. J. Am. Chem. Soc. 1999, 121, 9531–9538; (e) Ohff, M.; Ohff, A.; van der Boom, M. E; Milstein, D. J. Am. Chem. Soc. 1997, 119, 11687–11688. Furthermore, palladium-catalyzed arylation of alkenes with arenediazonium salts under an aerobic condition has been reported, see: Brunner, H.; Le Consturier de Courcy, N.; Genet, J.-P. Tetrahedron Lett. 1999, 40, 4815-4818. However, to our knowledge, there has been no precedent that O_2 acts as an oxidant in the Heck reaction.
- (a) McCrindle, R.; Ferguson, G.; Arsenault, G. J.; McAlees, A. J. J. Chem. Soc., Chem. Commun. 1983, 571–572; (b) McCrindle, R.; Ferguson, G.; Arsenault, G. J.; McAlees, A. J.; Stephenson, D. K. J. Chem. Res. (S) 1984, 360–361.

- For arylation of alkene bearing allylic alcohol and α,βunsaturated ester moieties, see: (a) Basavaiah, D.; Muthukumaran, K. *Tetrahedron* 1998, 54, 4943–4948; (b) Hosokawa, T.; Sugafuji, T.; Yamanaka, T.; Murahashi, S.-I. J. Organomet. Chem. 1994, 470, 253–256.
- 6. Into a mixture of PdCl₂(MeCN)₂ (12.9 mg, 0.05 mmol), PhI (225 mg, 1.1 mmol) and NEt₃ (202 mg, 2.0 mmol) in DMF (5 mL) was added 4 (116 mg, 1.0 mmol). After the solution was stirred under argon at 80°C for 6 h, the resulting mixture was diluted with Et₂O and washed with brine. The organic layer was dried over anhydrous Na_2SO_4 . Filtration followed by evaporation of the solvent gave oily material (297 mg) containing 5 in 62% NMR yield. The product 5 was purified by a short column chromatography of SiO₂. Compound 5 is in keto-enol equilibrium. ¹H NMR (270 MHz, CDCl₃): δ (keto form) 9.74 (d, J = 1.9 Hz, 1H, CHO), 7.23 (m, 5H, C₆H₅), 3.72 (s, 3H, CO_2CH_3), 3.65 (ddd, J=7.8, 6.7, 1.9 Hz, 1H, CH-CHO), 3.22 (d, J=6.7 Hz, 1H, $C_6H_5CH_2$), 3.20 (d, J = 7.8 Hz, 1H, C₆H₅CH₂); δ (enol form) 11.47 (d, J = 12.7Hz, 1H, CHOH), 7.23 (m, 5H, C_6H_5), 7.04 (dt, J=12.7, 0.9 Hz, 1H, CHOH), 3.72 (s, 3H, CO₂CH₃), 3.41 (broad s, 2H, C₆H₅CH₂); ¹³C NMR (68 MHz, CDCl₃): δ 196.1, 172.5, 161.9, 140.0, 137.4, 128.8, 128.7, 128.4, 128.3, 126,9, 126.2, 104.4, 60.2, 52.4, 51.5, 33.1, 32.2; IR (neat): v 3400 (O-H), 2950, 1725 (C=O), 1670, 1610, 1495, 1445, 1395 (C-H), 1335 (O-H), 1210, 1200, 1175 (C-O), 1095, 825 (C=CH), 750 (Ph-), 700 (Ph-), 475 cm⁻¹, MS (70 eV): m/z192 (M⁺), 163 (M⁺-CHO), 104 (PhCH₂CH-), 91 (PhCH₂-).
- 7. The configuration of enamine $\mathbf{6}$ is determined to be E by nuclear Overhauser effect (NOE) in NMR.
- 8. The reaction was performed under oxygen (balloon) by using 4 (232 mg, 2.0 mmol), PhI (448 mg, 0.25 mL, 2.2 mmol), NEt₃ (404 mg, 0.56 mL, 4.0 mmol) and PdCl₂(MeCN)₂ (26.0 mg, 0.1 mmol) in DMF (10 mL). After the solution was stirred at 80°C for 6 h, usual work-up gave oily material (550 mg) containing 6 in 57% NMR yield. The product 6 was purified by a short column chromatography of Al₂O₃ (12 g). ¹H NMR (270 MHz, CDCl₃): δ 7.62 (s, 1H, C=CH-N), 7.19 (m, 5H, C₆H₅-), 3.78 (s, 2H, C_6H_5 -CH₂), 3.65 (s, 3H, COOCH₃), 3.18 (q, J=7.2 Hz, 4H, NCH₂CH₃), 1.12 (t, J=7.2 Hz, 6H, NCH₂CH₃); ¹³C NMR (68 MHz, CDCl₃): δ 171.6 (C=O), 148.3 (C=CHN), 142.6 (C_6H_5 -), 128.2 (C_6H_5 -), 127.5 (C₆H₅-), 125.5 (C₆H₅-), 93.0 (C-COOCH₃), 51.0 (OCH₃), 47.0 (N-CH₂-), 30.9 (C₆H₅-CH₂), 14.8 (NCH₂CH₃); IR (neat): v 2975, 2945, 1680 (C=O), 1615 (C=C), 1495, 1450, 1430, 1380, 1360, 1345, 1315, 1260, 1135, 1085 (C-O-C), 735 (Ph-), 700 (Ph-), 480 cm⁻¹; MS (70 eV): m/z 247 (M⁺), 232 (M^+ -Me), 218 (M^+ -Et), 156 (M^+ -PhCH₂), 131 (PhCH₂CCO-), 115 (PhCH₂CC-); HRMS calcd for C₁₅H₂₁NO₂ 247.1572. Found: 247.1613.
- For related reactions, see: (a) Trzeciak, A. M.; Ciunik, Z.; Ziolkowski, J. J. Organometallics 2002, 21, 132–137; (b) Bharathi, P.; Periasamy, M. Org. Lett. 1999, 1, 857–859.